8.1

Gravitational Potential Energy

A particle gains or loses kinetic energy because itinteracts with other
objects thatexertforces onit. During any interaction, the change in
pariicle’s kinetic energy is equalto the total work done on the particle by

the forces thatacton it.

In many situations it seems as though energy has been stored in a system,
to be recovered later. For example, youmustdo work on the hammerhead
to lift it. In hoisting the hammerhead into the air you are storing energy in
the system, energy thatis later converted into kinetic energy as the
hammerheadfalls.

This example points to the idea of an energy associated with the position of
bodies in a system. This kind of energy is a measure of the potential or
possibility forwork to be done; when a hammerhead is at a raised position
in the air, there is a potential for work to be done on it by the gravitational
force, butonly if the hammerheadis allowed to fall to the ground. For this
reason, energy associatedwith position is called potentialenergy. The

potentialenergy, associated with a body’s weightand its heightabove the

ground, is called gravitational potentialenergy.

Considera body with mass m that moves along the y-axis as shown below.

The forces acting on it are its weight, with magnitude w=mg, and possibly

some otherforces; we call the vectorsum (resultant) of all otherforces
Fotrer. We want to find the work done by the weightwhen the body drops
froma heighty, above the originto a lower heighty,. The weight and

displacementare in the same direction, so the work W,,,, done on the body

by its weightis positive;

W = Fs =mg (v, — 3y) = mgy, — mgy, (1)
Equation (1)shows thatwe can express W, in terms of the values ofthe
quantity mgy atthe beginning and end of the displacement. This quantity,
the productofthe weight mg and the heighty above the origin of
coordinates, is called the gravitational potential energy, U.

U=mgy {2}
lts initial value is U7, = mgy, and its finalvalueis U, =mgv,. ThechangeinUis
the final value minus the initial value, AU =, -U;. We can express the work

W2y done by the gravitational force during the displacementfrom 3, to », as
W, =U-U,=-{U,-U)=-AU (3)
The negative signin front of AU is essential.

Whenthe body moves down, y decreases, the gravitationalforce does

positive work and the gravitational potentialenergy decreases (AL < 0).

When the body moves up, y increases, the work done by the gravitational

force is negative, and the gravitational potentialenergy increases (AU > 0).

Equation (3)shows thatthe unit of potential energy is the joule (J), the

same unitas is used forwork.

Gravitational potentialenergy is a shared property of the body and the

earth. It increases ifthe earth stays fixed and the height of the body

K+U =K, +U, (4)

1 I
;mvf +mgy =;mv§ +mgyy
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8.2
Motion along a Curved Path—Gravitational Potential

Energy

When other forces acton the body in addition to its weight, then F . is
notzero. Forthe pile driver, described in an earlier module, the force
applied by the hoisting cable and the friction with the vertical guiding rails
are examples of forces that mightbe included in Fg.. We call the work

done b}‘ Futher as Wnther-

Suppose the body moves along a curve as shown below.The bodyis acted

on by the gravitational force w = mg and by otherforces whose resultantis

F

oithear -

To find the work done by the gravitational force during this displacement,
we divide the path into small segments as; a typical segmentis shown

below.

The work done by the gravitational force overthis segmentis the scalar
product of the force and the displacement. In terms of unit vectors, the

forceis w = mg=—mg andthe displacementis As= Axi + Ayj, S0 the work

done by the gravitationalforce is
w -As=—mgj- (A + Ay )= —mghy

The work done by gravity is the same as though the body has been

displaced vertically a distance Ay, with no horizontaldisplacement. This is

true for every segment, so the total work done by the gravitationalforce is

-mg multiplied by the total vertical displacement (v, - 3, ):

Wy = —mg(yy — 3y) =gy —mgyy = U, -U,

This is the same equation which we obtained earlierwhen the body moved
along straightverticalline. So even if the path between two points is
curved, the total work done by the gravitational force depends only on the
differencein height between the two points of the path. The work is

unaffected by any horizontal motion that may occur.

If the work 7., done by otherforces F_._ is zero, it is only the force of

gravity that does work. As we have seen in the preceding module, the total

mechanical energy is conserved, when only the force of gravity does work.

K +U =K, +U,

1 -} 1 -
3 wV +mgy = 3 mvy +mgy;

- e

Example
Derive an expression forthe maximum height h of a projectile launched

with initial speed v, atan initial angle «,.

Solution

Letpoint 1 at y = 0 be the launch point, where the speedis v, =v,, and let

point2 at y = h be the highestpointon the trajectory.

We can express the kinetic energy at each point in terms of the

components of velocity, using +v' =+ +1].

K =-mi= %m[:ﬁ:x + 1»11] :

b | =

1 ra o
K, =—mlv;, +v; |
a ] . 2K LY 4

s

Since the x-componentofthe accelerationis zero v,, =y, . Atthe highest

pointoftrajectory, the y-componentof velocity is zero; so v,, =0.

Conservationof energy gives

K+U=K,+U,
1m[ Wty ~1+U=lm['v: +v2 )+ mgh
2 }lx "],1' £ 2 X v/ =d

Using the relations v,, =v, and + =0, we have

W, =2gh
po i _Ysina
1g 1g
Thus,
povisin’a




8.3

Mechanical Energy

The body is acted on by the gravitational force w =mg and possibly by other
forces whoseresultantis F__. The gravitational work is still given by

W, =U —U, =—{U,-U;)=-AU , but the total work W, is then sum of W,

and the work done by F.4., . We call this additional work W.r, s0 the total

work done by all forcesis w,, =7, +7,,.. Equating this to the change in

ot

kineticenergy, we have

H?crﬂ'.-:r +H?;'_‘E‘.' = KI _Kl
H?c'ﬂ'.-:r +Ul _U: = K: _Kl

which we can arrange in the form

K+U+W,,. =K, +U,

other

Using the appropriate expressions forthe various energy terms, we obtain

. 1 3
my +mgy + W, = ;mv:‘ + mgy,

other —

b | =

The work done by all forces otherthan the gravitational force equals the

changein the total mechanicalenergy E=kx +U ofthe system, where Uis

the gravitational potential energy.

othar = I:K: - Klj"'[U: - Ulj

other

This is known as the work-energy equation.

The work done by all forces otherthan the gravitationalforce equals the
change in the total mechaical energy E = K + U of the system, where U is

the gravitational potential energy and K is the kinetic energy. When w___ is

other

positive, E increases, and K, +U, is greater than x,+U,. When w7 is

negative, E decreases. In the special case in which no forces other than

the body’s weight do work, 7. = 0. The total mechanical energy is then

other

constant.

Example

Youthrow a 0.145-kg ball straightup in the air. Suppose yourhand moves
up 0.50 m while you are throwing the ball, which leaves yourhand with an

upward velocity of 20.0 m/s. Ignore air resistance.

1. Assumingthatyourhand exeris a constantupward force on the ball,
find the magnitude of that force.
2. Findthe speed ofthe ball at a point 15.0 m above the pointwhere it

leaves yourhand.

Solution

In this example, we must considerthe nongravitationalwork done by your
hand. The figure below shows a free-body diagram forthe ball while it is

being thrown.

The ball's motion occurs in two stages: whileit is in contactwith your hand
and afterit leaves yourhand. We let point 1 be where your hand first starts
to move, point2 be where the ball leaves yourhand, and point 3 be where
the ballis 15.0 m above point2. The nongravitational force F of your hand
acts only between points1and 2. We have y,=-050m, y, =0,and y, =15.0m.
The ball starts at rest at point 1, so v, =0, and we are given that the ball's

speedas it leavesyourhandis v, =20 Omss

We have

K =0 U, = mgy, =0.145x9.80 % (—0.50) =—0.71]

K = %m» =%>< 0.145x20.0° =29.0]

U, =mgy, =0.145=980=(0)=0

The initial potentialenergy U, is negative because the ballwas initially

below the origin.
W =K, —K)+(U, = 1) =(29.0-0) + (0 —(-0.71)) =29.71]

The kinetic energy of the ball increases by 29.0 J, and the potential energy

increasesby0.71J;the sumis E, - E, the change in total mechanical

energy, which is equalto

oither -

W 2971

Woee = F (32— 1) F=— =t
w1 w1 -

=5941N

We note that between points 2 and 3, total mechanicalenergy is

conserved; the force of yourhand no longeracts, so v = 0.

other

K, +U, =K, +U,
U, =mgy; =0.145x9.80x(15.0)=213]

K;

, 2K, . 0
K, = 2wl NSy . Y . CLL) BT PN
1T : m 40145

The significance of the plus-or-minus signis that the ball passes point3

(K, +U,)-1, =(29.0+0)-213=77]

twice, once on the way up and again on the way down.



8.4
Elastic Potential Energy

When a railroad car runs into a spring bumperat the end of the track, the
spring is compressed as the caris broughtto a stop. If there is no friction,
the bumpersprings backand the car moves away in the opposite direction
with its original speed. During the interaction with the spring, the car’s
kineticenergy has been “stored” in the elastic deformation of the string. We
do work on the system to store energy, which can later be converted to

kineticenergy.

A body is called elastic if it returns to its original shape and size after being
deformed. We will consideran ideal spring. To keep such an ideal spring
stretched by adistance x, we mustexerta force F=ix, where & is the

force constant of the spring.

Figure below shows a spring, with its left end stationary, and its right end

attached to a block with mass m that can move along the x-axis.

In figure (a) the body is at x = 0 when the spring is neitherstretched nor
compressed. We move the block to one side, thereby stretching or
compressing the spring, and thenlet it go. As the block moves fromone

position x to anotherposition x,, we found earlierin the preceding unit

thatthe work we must do on the springis

1., 1.,
w =§fmj —Ehf
where & is the force constantof the spring. We need the work done by the
spring. From Newton's third law the two quantities of work are just
negatives of each other. Therefore, we find that in a displacementfrom x,
to x, the spring does an amountofwork 7, given by

W, =~k ke

2|

When x, and x, are both positive and x, > x, (figureb), the spring does

negative work on the block, which moves inthe +x-direction while the
spring pulls on it in the — x-direction. The spring stretches farther, and the

block slows down. When x, and x, are both positive and x, < x (figure ¢),

the spring does positive work as it relaxes and the block speeds up. Figure
(d)is a compressedspring, and it does positive work on the block as it

relaxes.

We define the elastic potential energy as

U=_l

e

Figure below is a graph of this equation.

We can now express the work 7, done on the block by the elastic force in

terms of the change in potentialenergy:

When a stretched spring is stretched further, as in figure (b), 7, is negative

and U increases; a greateramountof elastic potentialenergy is stored in
the spring. When a stretched spring relaxes, as in figure (¢), 7, is positive,
and U decreases; the spring loses elastic potentialenergy. Negative values
of x referto a compressedspring. But, U is positive for both positive and

negative x.

Gravitational potential energy is a shared property of a body and the earth,
butelastic potentialenergy is stored justin the spring (or other deformable

body). Animportant difference between gravitational potential energy

U7 =mgy and elastic potential energy U=%F¢xz is thatwe do not have the

freedomtochoose x=0 to be whereverwe wish. To be consistent with

Uzéht:& x=0 mustbe the position at which the spring is neither stretched

norcompressed. Atthat position, its elastic potentialenergy and force that

it exerts are both zero.

If the elastic force is the only force that does work on the body, then

H’_f

ot

= Wa = Ul - U:

The work-energy theorem says that 7, = X, - X, no matter what kind of

ot

forces are actingon a body. Therefore, it gives us

K +U =K +U,

In this case the total mechanicalenergy E=K + U7 (the sum of kinetic and

elastic potentialenergy)is conserved.



8.5
Work and Energy

Again, we will considerthe spring as in the precding module. If forces other

than the elastic force also do work on the body, we call theirwork W, as

before. Thenthe total workis w_ =, +m

tot other 1

and the work-energy theorem

gives
Wy+We =K, - K,

U-U,+W,,.

—K: _Kl

K+U+W

other

=K +U,

O+ 02+ W gy = =0+ =

k| =

This equation shows thatthe work done by all forces otherthan the elastic
force equals the change in the total mechanicalenergy E=k +17 ofthe
system, where Uis the elastic potentialenergy. “The system”is made up of

the body of mass m and the spring of force constantk. When m_is

positive, E increases; when 7,

other

is negative, E decreses.

When we have both gravitational and elastic forces, such as a block

attached to the lower end of a vertically hanging spring, then

K+ Uy +U + W,

oither

- K] + Ll_mv.l + Ll_a.'_l

The work done by all forces otherthan the gravitational force orelastic
force equals the change in the total mechanicalenergy £=kK +U ofthe

system, where Uis the sum of the gravitational potential energy and the
elastic potentialenergy. If the gravitational and elastic forces are the only

forces thatdowork on the body, then w,_ = 0 and the total mechanical

energy (including both gravitational and elastic potential energy)is

conserved.

In problem solving, we rememberthat the work done by the gravitational
and elastic forces is accounted for by their potential energies; the work of

the otherforces, .., hasto be included separately. Furthermore, in the
elastic potentialenergy, U, = %h* , x is the displacement of the spring from

its unstretched length.
Example 1
In the figure below, a gliderwith mass m=0200kg sits on a frictionless

horizontal air track, connectedto a spring with force constant £ =500 N/m .

The glider is initially at rest at x = 0, with the spring unstretiched.

SVWWWop

You then apply a constant force F in the +x direction with magnitude 0.610
N to the glider. What is the glider’s velocity when it has moved to x = 0.100
m?

Solution

Although the force F you apply is constant, the spring force isn’t, so the
acceleration of the glider won’tbe constant. Total mechanicalenergy is not
conservedbecause of the work done by the force F. We use the energy

relation.

Letpoint 1 be at x=0, where the velocityis 1. =0, and let point 2 be at

x=0100m .

The energy quantities are

K =0
U, =0
K, =lmv3,

>V
= (5.00)(0.100)* = 0.0250 J
e =(0.610)(0.100) = 0.0610

We use the energy relation.

K A+U+W,, =K +U,
K, =K +U-U,+W,,.
=0+0-0.0250+0.0610 =0.0360 ]

9 i)
. =J_K1 =J-x0_ﬂ35ﬂ —0.60m's
- m 0.200

We use the positive square rootbecause the glideris movingin the +x-
direction.
Example 2

In the example 1, suppose the force F is removed when the gliderreaches
the point x=0.100m . How much farther does the glider move before coming

to rest?

Solution

AfterF is removed, the spring force is the only force doing work. Hence for

this part of motion the mechanicalenergy E=x +U is conserved.

We'll let the point2 be at x=0.100m , and let point 3 be where the glider
comes instantaneously to rest. We'll use the conservation ofenergy

expressions.

E+U =K+,
U, =K, +U,- K,
=0.0360+0.0250-0=0.06101J

J J’*x[ﬁl 0610
Xy =
5.00

The body moves an additional 0.056 m after the force is removed at

x=0.100m .

Example 3

In a “worst-case”design scenario, a 2000-kg elevatorwith broken cables is
falling at 25 m/s whenit first contacts a cushioning spring atthe bottom of
the shaft. The spring is supposedto stop the elevator, compressing 3.00m

as it does so.

'1'..|'.u|u.u|f

During the motion a safety clamp applies a constant 17,000-N frictional
force to the elevator. As a design consultant, you are asked to determine

whatthe force constantof the spring should be?

Solution

We'lluse the energy approachto determine the force constant. Total
mechanical energy is not conserved because the friction force does

negative work 7. on the elevator. This probleminvolves both gravitational

and elastic potential energy.

We take point 1 as the position of the bottom of the elevatorwhen it initially
contacts the spring, and take point 2 as its positionwheniitis atrest. We
choosethe originto be at point 1, s0 y, =0and v, =-3.00m . With this choice
the coordinate of the upperend of the spring is the same as the coordinate

of the elevator, so the elastic potentialenergy at any point between point 1
and point2 is U, =éﬁ(}':. The gravitational potential energyis U_.. = mgy. We
know the initial and final speeds of the elevatorand the magnitude of the

friction force.

K = =%(2000}(25)1 =625.000

[ h.:lr—-

K,=

Ul=mg}'1+%k}f=[]+[]=[]

_ 1.,
U, =mgy, + 3 ks

The gravitational potential energyatpoint 2 is
= (2000)(9.80)(-3.00) = —58,800]

The 17,000-N friction force, acting opposite to the 3.00-m displacement,

other

does the work
W, =—(17.000)(3.00)=-51,000]1
K+U+W,, =K +U,
- ( 1. 5)
K +0+TW,, =0+ mg,+-h3 |
< )

So, the force constantofthe spring is

2[K1 + W e — mrﬁ'})
»
_ 2[625,000—51,000 — (~58,000)]
B (—=3.00)°

k=

=141%10° N'm




8.6

Conservative and Nonconservative Forces

When you throw a ball up in the air, it slows down as kinetic energy is
convertedinto potential energy. Buton the way down, the conversionis
reversed, and the ball speeds up as potential energy is converted back to
kinetic energy. If there is no air resistance, the ballis moving just as fast

when you catch it as when you threw it.

If a glider moving on a frictionless horizontal airtrack runs into a spring
bumperatthe end of the track, the spring compresses and the gliderstops.
Butthen it bounces back, and if there is no friction, the glider has the same
speed and kinetic energy it had before the collision. Again, there is a two-

way conversion from kinetic to potential energy and back.

In both cases we find that we can define a potential energy function so that

the total mechanical energy, kinetic plus potential, is constant or conserved

during the motion.

A force that offers this opportunity of two-way conversion betweenkinetic
and potential energies is called a conservative force. \We have seentwo
examples of conservative forces: the gravitational force and the spring

force.
The work done by a conservative force always has these properties:

1. It can always be expressed as the difference between the initialand
final values of a potential energy function.

2. ltis reversible

3. Iltis independentofthe path ofthe body and dependsonly onthe
starting and ending points.
4. When the starting and ending points are the same, the total work is

Zel0.

When the only forces thatdo work are conservative forces, the total

mechanicalenergy E=K +U is constant.

Considerthe friction force acting on the crate sliding on a ramp. When the
body slides up and then back down to the starting point, the total work done
on it by the friction force is not zero. When the direction of motion reverses,
so does the friction force, and friction does negative work in both directions.
When a car with its brakes locked skids across the pavementwith
decreasing speed (anddecreasing kinetic energy), the lost kinetic energy
cannotbe recoveredby reversing the motion or in any otherway, and
mechanical energy is not conserved. There is no potential energy function

forthe friction force.

In the same way, the force of fluid resistance is not conservative. If you
throw a ball up in the air, air resistance does negative work on the ball
while it is rising and while it is descending. The ball returns to yourhand
with less speed and less kinetic energy than when it left, and there is no

way to get back the lost mechanical energy.

A force thatis not conservative is called a honconservativeforce. The
work done by a nonconservative force cannotbe represented by a potential
energy function. Some nonconservative forces, like kinetic friction or fluid
resistance, cause mechanicalenergyto be lost or dissipated; a force of this
kindis called a dissipative force. There are also nonconservative forces
thatincrease mechanical energy. The fragments of an exploding fire
crackerfly of with very large kinetic energy, due to a chemical reaction of
gunpowderwith oxygen. The forces unleashed by this reaction are
nonconservative because the process is notreversible. The spontaneous
reassmbly of fragmentsinto a complete firecrackeris some thing that

doesn’tseemto be possible.

Example 1

You are rearranging your furniture and wish to move a 40.0-kg futon 2.50 m

across the room.

However, the straight-line path is blocked by a heavy coffee table that you
don’twantto move. Instead, you slide the futonin a dogleg path overthe
floor;the doglegs are 2.00 m and 1.50 m long. Compared to the straight-
line path, how much more work mustyou do to push the futon in the dogleg

path? The coefficient of kinetic friction is 0.200.
Solution

Here work is done both by you and by the force of friction, so we mustthe
energy relation thatincludes forces otherthan elastic or gravitational
forces. We will use this relation to find a connection between the work you

do and the work done by friction.

Figure above showsthe initial and final points. The futon is at rest at both

point1 and point2, so K, =k, =0. The gravitational potential energy does
notchange becausethe futon moves only horizontally: o, =, =0.

Therefore, fromthe equation x,+v,+w,_ =k, +U, it follows that

other

.’ —
other — 0
.’ .‘, —
H}'cru + friction — 0.
i —__T3
H}'a‘u - friction

Thus to determine ., we will calculate the work done by friction.

Because the flooris horizontal, the normal force on the futon equals it

weight mg, and the magnitude of the friction forceis f, = un=pumg. The
work you must do overeach path is then:

Straight-line path

Hicru = _H?ii-: = _I:_ f;-ij = +,|I'.£‘ mgs
= (0.200)((40.0)(9.80)(2.50) =196 J

Dogleg path

Hicru = _Hfﬁi-: = _I:_ fl‘sj =+umgs
= (0.200)((40.0)(9.80)(2.00 +1.50) =274

The extrawork youmustdois 274 J-196J =78 J



8.7

Potential Energy and Force

Fora body with mass min a uniform gravitationalfield, the gravitational
forceis F, =-mg. We found thatthe corresponding potential energy is
U(y)y=mgy. 10 stretch a spring by a distance x, we exert a force equal to
+kx. By Newton’s third law the force that an ideal spring exerts on a body
is opposite this, F, =—kx. The corresponding potential energyfunction is

U(x) = l;ﬁcr .

i

We will encountersituations in which you are given an expressionforthe
potential energy as a function of position and have to find the
corresponding force. In electricity, it is often fareasierto calculate the
electric potential energy first, then determine the corresponding electric

force afterward.

In the following, we find the force that correspondsto a given potential
energy expression. Firstlet us considermotion along a straightline, with
coordinate x. We denote the x-component of force, a function of x, by F.(x),
and the potentialenergy as U(») . In any displacement, the work W done by

a conservative force equals the negative of the change AU in potential

energy:
W =—AU

Letus apply this to a small displacement Ax. The work done by the force
E.(x) during this displacementis approximately equalto F.(x)ax. Thisis

approximate because F (x) may vary little overthe interval ax. Itis

approximately true that,

E (x)Ax =—AU
AU
F.(x)= —E

We take the limit as Ax— 0 in this limit, the variation of £ (x) becomes

negligible, and we have the exactrelation

AU (x)

E=-2

In regions where U/(x) changes mostrapidly with x (that is where dU(x)/ dx

is large), the greatestamountofwork is done during a given displacement,

and this corresponds large force magnitude. Also, when F.(x) is in the
positive x-direction, U(x) decreases with increasing x. So, E (x) and
dU(x)/dx should indeed have opposite signs. The physical meaning of the

above equation is that a conservative force always acts to push the system

toward lower potential energy.

Foran illustration, let us considerthe function forelastic potentialenergy

U(x) =%I¢xz .

ﬂ(x)=_d£! %hl | = —iox
xll‘-.h

which is the correctexpression forthe force exerted by an ideal spring

(figure a).

mg

Similarly, for gravitational potential energy we have U(v) =mgy. We get

F,= —% =—§(mg}'} =-mg, Which is the correctexpression forgravitational

force (figure b).

Example

An electrically charged particle is held at rest at the pointx = 0, while a
second particle with equal charge is free to move along the positive x-axis

The potential energy of the system s

U(x) = %

where C is a positive constantthat depends on the magnitude of the
charges. Derive an expression for the x-component of the force acting on

the movable charge, as a function of its position.

Solution

From calculus, we know the derivative with respect to x of the function 1/x

is —1/x2. So the force on the movable charge forx > 0 is

W __{_1)_C
dx Loxt) X

F()=-

The x-component of force is positive, corresponding to a repulsive
interaction between like electric charges. The potential energy is very large
forsmall x and approaches zero as x becomes large; the force pushes the
movable charge toward large positive value of x, for which the potential
energy is less. The force varies as 1/x7; it is small when the particles are
farapart (large x) but becomes large when the particles are close together

(small x).

Force and Potentialenergyin Three Dimensions
We can extend this analysis to three dimension, where the particle may
move in the x, v.or z-direction , or all at once, underthe action ofa

conservative force thathas components F,_F,.and F,. Each component of

force may be a function of the coordinates x. y.and z. The potential energy

function Uis also a function of all three space coordinates. We can now
find each componentof force. The potentialenergy change AT when the
particle moves a small distance Ax in the x-direction is again given by

- FAx; it doesn’tdependon F, and F,, which representforce components
thatare perpendicularto the displacementand do nowork. So we again

have the approximate relation

F=——"
N Ax

The v, and z-components Of force are determined in exactly the same way:

AU g oAU
Ay Az

F,=
To make these relations exact, we need to take the limits

Ax— 0, Ay = 0.and Az = 0 s0 that these ratios become derivatives. Because U

may be a function of all three coordinates, we need torememberthat when
we calculate each of these derivatives, only one coordinate changes ata
time. We compute the derivative of U with respect to x by assuming that y
and z are constant and only x varies, and so on. Such a derivative is called
a partial derivative. The usual notationis éU/éx andso on; the symbol é is

a modified dto remind us of the nature of this operation. So we write

F=-2 F=-

N che

clU eu clU
cy

We can use unit vectors to write a single compactvectorexpression forthe

force F:

The expression inside the parentheses represents a particularoperation on
the function U, in which we take the partial derivative of U with respectto
each coordinate, multiply by the corresponding unit vector, and take the
vectorsum. This operation is called the gradientof U and is often
abbreviated as VU. Thus the force is the negative of the gradientof the

potential energy function:
F=VU

Foran illustration, we considerthe gravitational potential energy function

U=mgy:

F ==V (mgy)
_ (20, dmgy) ~ | 0mgy) )

| — \=(-mg)j
\ o ] iz J

This is justthe familiarexpressionforthe gravitational force.
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Energy Diagrams

Figure below shows a glider with mass m that moves along the x-axis on

an air track.
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The spring exerts on the glider a force with x-component F, =—ix. Figure

below is a graph of the corresponding potential energy function U(x):%b::.

s

If the elastic force ofthe spring is the only horizontalforce acting on the
glider, the total mechanical energy E=K +U is constant, independent of x.

A graph of E as a function of x is thus a straight horizontal line.

The vertical distance betweenthe U and E graphs at each pointrepresents
the difference E— U, equalto the kinetic energy K at that point. We see that
K is greatestat x = 0. It is zero at the values of x where the two graphs
cross, labeled Aand —A in the diagram. Thus the speed v is the greatestat
x=0,anditis zero at x=+4, the points of maximum possible displacement
from x = 0 for a given value of the total energy E. The potential energy can
neverbe greaterthan the total energy E; if it were, K would be negative,

and that's impossible. The motion is back-and-forth oscillation between the

points x = A and x = —-A.

Ateach point, the force F, onthe glideris equalto the negative of the slope
of the U(x) curve; F, =—dU/dx. When the particle is at x = 0, the slope and
the force are zero, so this is an equilibrium position. When x is positive, the
slope of the U/(x) curveis positive and the force F, is negative, directed
toward the origin. When x is negative, the slope is negative and F, is

positive, again toward the origin. Such a force is sometimes called a

restoring force; when the glider is displaced to either side of x = 0, the
resulting force tends to “restore” it back to x = 0. An analogous situation is

a marble rolling around in a round-bottomed salad bowl. We say thatx =0
is a point of stable equilibrium. More generally, any minimumin a

potential energy curve is a stable equilibrium position.

Figure (a) below shows a hypothetical but more general potential energy

function U . Figure (b) shows the corresponding force E, =—dU/ dx.

Points x, and x, are stable equilibrium points. At each of these points, £ is
zero becausethe slope of the U(x curveis zero. When the particle is

displacedto either side, the force pushes back toward the equilibrium point.

The slope ofthe U(x) curveis alsozero at points x, and x,, andthese are

also equilibrium points. Butwhen the particle is displaced a little to the right

of either point, the slope ofthe 7(x) curve becomesnegative,
corresponding to a positive E thattends to push the particle still farther
fromthe point. When the particle is displaced alittle to the left, £, is

negative, again pushing away from equilibrium. This is analogousto a

marble rolling on the top of a bowling ball. Points x, and x, are called

unstable equilibrium points; any maximumin a potentialenergy curveis

an unstable equilibrium position.

If the total energy is E, and the particle is initially near x, it can move only
in the region between x, and x, determined by the intersectionof £, and
graphs. Again U cannotbe greaterthan E, because KX cannotbe negative.
We speak of the particle as moving in a potentialwell, and x, and x, are the

turning points of the particle’'s motion (since at these points, the particle

stops and reverses direction). If we increase the total energy to the level E,
, the particle can move over a widerrange, from x. to x,. If the total energy
is greaterthan E., the particle can “escape”and move to indefinitely large
values of x. At the other extreme, E, represents the least possible total

energy the systemcan have.



